Vaccine Information: BOOSTRIX (Page 2 of 5)

6.2 Postmarketing Experience

In addition to reports in clinical trials for BOOSTRIX, the following adverse events have been identified in persons aged 10 years and older during postapproval use of BOOSTRIX worldwide. Because these events are reported voluntarily from a population of uncertain size, it is not always possible to reliably estimate their frequency or establish a causal relationship to the vaccine.

Blood and Lymphatic System Disorders

Lymphadenitis, lymphadenopathy.

Immune System Disorders

Allergic reactions, including anaphylactic and anaphylactoid reactions.

Cardiac Disorders

Myocarditis.

General Disorders and Administration Site Conditions

Extensive swelling of the injected limb, injection site induration, injection site inflammation, injection site mass, injection site pruritus, injection site nodule, injection site warmth, injection site reaction.

Musculoskeletal and Connective Tissue Disorders

Arthralgia, back pain, myalgia.

Nervous System Disorders

Convulsions (with and without fever), encephalitis, facial palsy, loss of consciousness, paresthesia, syncope.

Skin and Subcutaneous Tissue Disorders

Angioedema, exanthem, Henoch-Schönlein purpura, rash, urticaria.

7 DRUG INTERACTIONS

7.1 Immunosuppressive Therapies

Immunosuppressive therapies, including irradiation, antimetabolites, alkylating agents, cytotoxic drugs, and corticosteroids (used in greater than physiologic doses), may reduce the immune response to BOOSTRIX.

8 USE IN SPECIFIC POPULATIONS

8.1 Pregnancy

Pregnancy Exposure Registry

There is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to BOOSTRIX during pregnancy. Healthcare providers are encouraged to register women by calling 1-888-452-9622 or visiting http://pregnancyregistry.gsk.com/boostrix.html.

Risk Summary

All pregnancies have a risk of birth defect, loss, or other adverse outcomes. In the U.S. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively.

In a randomized, controlled clinical study (NCT02377349), in which the non-U.S. formulation of BOOSTRIX was administered during the third trimester of pregnancy, there were no identified vaccine-related adverse effects on pregnancy or on the fetus/newborn child (see Data).

Available data from the pregnancy registry and from spontaneous and postmarketing reports suggest that the rates of major birth defects and miscarriage in women who received BOOSTRIX within 28 days prior to conception or during pregnancy are consistent with estimated background rates (see Data).

A developmental toxicity study was performed in female rats administered INFANRIX prior to mating and BOOSTRIX during gestation, 0.1 mL at each occasion (a single human dose is 0.5 mL). In a second study, female rats were administered 0.2 mL of BOOSTRIX prior to mating and during the gestation and lactation period. In a third study, female New Zealand White rabbits were given 0.5 mL (full human dose) of BOOSTRIX (non-U.S. formulation) prior to mating and during gestation. These studies revealed no evidence of harm to the fetus due to BOOSTRIX (see Data).

Data

Human Data: Safety data from a randomized (1:1), controlled clinical study (NCT02377349) (341 non-U.S. formulation of BOOSTRIX, 346 placebo pregnancy outcomes) in which the non-U.S. formulation of BOOSTRIX was administered to pregnant women during the third trimester did not reveal any vaccine-related adverse effects on pregnancy or on the fetus/newborn child. Safety data from prospective clinical studies on the use of BOOSTRIX during the first and second trimester of pregnancy are not available.

An assessment of data from the U.S. pregnancy exposure registry over approximately 17 years (2005-2022) included 1,523 prospective reports of exposure to BOOSTRIX within 28 days prior to conception or during pregnancy. Among the 256 reports with known pregnancy outcomes, 19 women were exposed to BOOSTRIX in the first trimester with no major birth defects reported and 3 spontaneous abortions with no apparent birth defect; 28 women were exposed to BOOSTRIX in the second trimester, and 199 women were exposed to BOOSTRIX in the third trimester with no major birth defects reported; 10 women were exposed to BOOSTRIX at an unknown timing in pregnancy with no major birth defects reported.

An assessment of U.S. spontaneous reports and postmarketing data included 810 prospective reports of exposure to BOOSTRIX during pregnancy since May 2005 through 31 August 2022. Among the 138 reports with known pregnancy outcomes, 17 women were exposed to BOOSTRIX in the first trimester with no major birth defects reported and 2 spontaneous abortions with no apparent birth defect; 26 women were exposed to BOOSTRIX in the second trimester, and 92 women were exposed to BOOSTRIX in the third trimester with no major birth defects reported; 3 women were exposed to BOOSTRIX at an unknown timing in pregnancy with no major birth defects reported.

Animal Data: Developmental toxicity studies were performed in female rats and New Zealand White rabbits. In one study, female rats were administered 0.1 mL of INFANRIX (a single human dose is 0.5 mL) by intramuscular injection 30 days prior to mating and 0.1 mL of BOOSTRIX (a single human dose is 0.5 mL) by intramuscular injection on Gestation Days 6, 8, 11, and 15. The antigens in INFANRIX are the same as those in BOOSTRIX, but INFANRIX is formulated with higher quantities of these antigens. In a second study, female rats were administered 0.2 mL of BOOSTRIX by intramuscular injection 28 days and 14 days prior to mating, on Gestation Days 3, 8, 11, and 15, and on Lactation Day 7. In these studies, no adverse effects on embryo-fetal or pre-weaning development up to Postnatal Day 25 were observed; there were no fetal malformations or variations observed. In a third study, female New Zealand White rabbits were administered 0.5 mL (full human dose) of BOOSTRIX (non-U.S. formulation) by intramuscular injection on Premating Days -28 and -14 and on Gestation Days 3, 8, 11, 15, and 24. In this study, no adverse effects on embryo-fetal development related to BOOSTRIX were observed; postnatal development was not evaluated.

8.2 Lactation

Risk Summary

It is not known whether the vaccine components of BOOSTRIX are excreted in human milk. Data are not available to assess the effect of administration of BOOSTRIX on breastfed infants or on milk production/excretion. The developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for BOOSTRIX and any potential adverse effects on the breastfed child from BOOSTRIX or from the underlying maternal condition. For preventive vaccines, the underlying maternal condition is susceptibility to disease prevented by the vaccine.

8.4 Pediatric Use

BOOSTRIX is not indicated for use in children aged younger than 10 years. Safety and effectiveness of BOOSTRIX in this age group have not been established.

8.5 Geriatric Use

In the initial-dose clinical trials, 1,104 subjects aged 65 years and older received BOOSTRIX; of these subjects, 299 were aged 75 years and older. Adverse events following BOOSTRIX were similar in frequency to those reported with the comparator Td vaccine [see Adverse Reactions (6.1)].

A revaccination study of BOOSTRIX in adults aged 28 to 73 years [see Clinical Studies (14.4)] did not include sufficient numbers of subjects aged 65 and older to determine whether they respond differently from younger subjects.

11 DESCRIPTION

BOOSTRIX (Tetanus Toxoid, Reduced Diphtheria Toxoid and Acellular Pertussis Vaccine, Adsorbed) is a noninfectious, sterile, vaccine for intramuscular administration. It contains tetanus toxoid, diphtheria toxoid, and pertussis antigens (inactivated pertussis toxin [PT] and formaldehyde-treated FHA and PRN). The antigens are the same as those in INFANRIX, but BOOSTRIX is formulated with reduced quantities of these antigens.

Tetanus toxin is produced by growing Clostridium tetani (C. tetani) in a modified Latham medium derived from bovine casein. The diphtheria toxin is produced by growing Corynebacterium diphtheriae (C. diphtheriae) in Fenton medium containing a bovine extract. The bovine materials used in these extracts are sourced from countries which the United States Department of Agriculture (USDA) has determined neither have nor are at risk of bovine spongiform encephalopathy (BSE). Both toxins are detoxified with formaldehyde, concentrated by ultrafiltration, and purified by precipitation, dialysis, and sterile filtration.

The acellular pertussis antigens (PT, FHA, and PRN) are isolated from Bordetella pertussis (B. pertussis) culture grown in modified Stainer-Scholte liquid medium. PT and FHA are isolated from the fermentation broth; PRN is extracted from the cells by heat treatment and flocculation. The antigens are purified in successive chromatographic and precipitation steps. PT is detoxified using glutaraldehyde and formaldehyde. FHA and PRN are treated with formaldehyde.

Each antigen is individually adsorbed onto aluminum hydroxide. Each 0.5-mL dose is formulated to contain 5 Lf of tetanus toxoid, 2.5 Lf of diphtheria toxoid, 8 mcg of inactivated PT, 8 mcg of FHA, and 2.5 mcg of PRN (69 kiloDalton outer membrane protein).

Tetanus and diphtheria toxoid potency is determined by measuring the amount of neutralizing antitoxin in previously immunized guinea pigs. The potency of the acellular pertussis components (inactivated PT and formaldehyde-treated FHA and PRN) is determined by enzyme-linked immunosorbent assay (ELISA) on sera from previously immunized mice.

Each 0.5-mL dose contains aluminum hydroxide as adjuvant (formulated to contain 0.3 mg aluminum) and 4.4 mg of sodium chloride. The aluminum content is measured by assay. Each dose also contains ≤100 mcg of residual formaldehyde and ≤100 mcg of polysorbate 80 (Tween 80).

BOOSTRIX is available in vials and prefilled syringes. The tip cap and rubber plunger stopper of the prefilled syringe are not made with natural rubber latex. The vial stoppers are not made with natural rubber latex.

BOOSTRIX is formulated without preservatives.

12 CLINICAL PHARMACOLOGY

12.1 Mechanism of Action

Active Immunization

Tetanus is a condition manifested primarily by neuromuscular dysfunction caused by a potent exotoxin released by C. tetani. Protection against disease is due to the development of neutralizing antibodies to the tetanus toxin. A serum tetanus antitoxin level of at least 0.01 IU/mL, measured by neutralization assays, is considered the minimum protective level.2 A level ≥0.1 IU/mL by ELISA has been considered as protective.

Diphtheria is an acute toxin-mediated infectious disease caused by toxigenic strains of C. diphtheriae. Protection against disease is due to the development of neutralizing antibodies to the diphtheria toxin. A serum diphtheria antitoxin level of 0.01 IU/mL, measured by neutralization assays, is the lowest level giving some degree of protection; a level of 0.1 IU/mL by ELISA is regarded as protective. Diphtheria antitoxin levels ≥1.0 IU/mL by ELISA have been associated with long-term protection.3

Pertussis (whooping cough) is a disease of the respiratory tract caused by B. pertussis. The role of the different components produced by B. pertussis in either the pathogenesis of, or the immunity to, pertussis is not well understood.

Passive Immunization to Prevent Pertussis in Infants

Antibodies to pertussis antigens from individuals vaccinated during the third trimester of pregnancy are transferred transplacentally to prevent pertussis in infants younger than 2 months of age.

VxLabels.com provides trustworthy package insert and label information about marketed drugs and vaccines as submitted by manufacturers to the U.S. Food and Drug Administration. Package information is not reviewed or updated separately by VxLabels.com. Every individual vaccine label and package insert entry contains a unique identifier which can be used to secure further details directly from the U.S. National Institutes of Health and/or the FDA.

Vaccine Sections

Vaccine Information by RSS

As the leading independent provider of trustworthy vaccine information, our database comes directly from the FDA's central repository of drug labels and package inserts under the Structured Product Labeling standard. VxLabels.com provides the full vaccine subset of the FDA's repository. Vaccine information provided here is not intended as a substitute for direct consultation with a qualified health professional.

Terms of Use | Copyright © 2024. All Rights Reserved.